CCEA A2 Mathematics & Further Mathematics

Teaching Schedules

Updated August 2020

These schedules are based upon shared teaching with equal times for each of 2 teachers.

Please note that this teaching order should be followed by all teachers.

They will allow either consecutive or parallel teaching of A2 Mathematics and Further Mathematics.

Mathematics

This schedule is designed to cover all of Unit 1 first, then followed by Unit 2A and Unit 2B.

Further Mathematics

These schedules are designed to cover all of Unit 1 first, then followed by each of the other two Applied units.

A2 Mathematics

Week	Teacher 1	Teacher 2
1	 Partial Fractions Simplify rational expressions by factorising, cancelling and algebraic division Decompose rational functions into partial fractions 	 Trigonometry Radian measure Arc length and sector area Definitions of secant, cosecant, cotangent Definitions of arcsin, arccos and arctan
2 3 4 5	 Differentiation (i) Differentiation of exponential, logarithmic and trig functions and their related sums, differences and constant multiples Chain rule Product rule 	 Graphs of each function, including domains and ranges Use of sec² θ = 1 + tan² θ cosec²θ = 1 + cot² θ Compound angle formulae for sine, cosine and
6 7 8	 Quotient rule Integration Integrate e^{kx}, ¹/_x, sin kx, cos kx and related functions Area between 2 curves 	 tangent Double angle formulae Harmonic form Construct proofs involving trig functions and identities Use of trig functions to solve problems in context
9	 Integration using Substitution Parts Partial fractions Volumes of revolution 	 Sequences and Series Simple sequences, including recurrence relations Convergence, divergence and oscillation Use of sigma notation for series
10	 Parametric Equations Use parametric equations of curves Convert between parametric and Cartesian forms 	 Arithmetic Progressions Geometric Progressions
11 12 13	 Differentiation(ii) Differentiation of simple functions defined implicitly or parametrically To include second derivatives Differential Equations 	Binomial • Expansion of $(a + bx)^n$ for any rational n • Knowledge of range of validity
14	 Construct and solve simple differential equations Interpret solution and identify limitations 	Functions Definition and terminology Composite function
15	 Numerical Methods Use of trapezium rule as an approximation to the area under a curve 	Inverse functions and graphs Modulus function Craph Transformations
16	 Location of roots Newton-Raphson method Moments 	Graph Transformations Combination of simple transformations
17 18 19	 Use moments in simple static contexts – to include Rods Ladders Hinged beams 	 Kinematics and calculus Motion in a straight line Motion in two dimensions in vector form

Week	Teacher 1	Teacher 2
20 21 22	 Impulse and Momentum Simple use of impulse and momentum Conservation of linear momentum Problems to involve direct collisions and explosions Normal distribution 	 Projectiles Solve problems involving projectiles – may include vector format Derive and use formulae for time of flight, range, equation of path of flight
23	 Use of the normal distribution as an example of a continuous probability distribution Find probabilities using the normal distribution Selection of an appropriate binomial/normal model for a specific context 	 Hypothesis Testing Understand and use the language of hypothesis testing Conduct a hypothesis test for the proportion in the binomial distribution
24 25	 Probability Use of conditional probability – to include tree diagrams, Venn diagram and two-way tables Use of the conditional probability formula Solution of problems in context 	 the mean of a normal distribution Interpret results of hypothesis test in context
26	 Hypothesis Testing Interpret a correlation coefficient using a p-value or critical value 	

A2 Further Mathematics Units 1, 2A & 2B

Week	Teacher 1	Teacher 2
1	Further Circular Motion ¹	Polar Coordinates
2	Banked corners	Convert between polar and Cartesian
	• Sliding	coordinates
	Overturning (some introductory work on	• Sketch curves with r given as function of θ
	Moments will be required)	Area enclosed by a polar curve
3	• •	Complex numbers
4	Induction	Use of De Moivre's Theorem to find
5	Construction of proofs involving e.g.	 Multiple angle formulae
6	o Sums of series	 Sums of series
	 Divisibility 	Use of
	 Powers of matrices 	$\circ e^{\mathrm{i}\theta} = \cos\theta + \mathrm{i}\sin\theta$
7	Hyperbolic Functions	$\circ z = re^{\mathrm{i}\theta}$
	 Definitions of sinh x, cosh x and tanh x, 	• Find n th roots of $re^{i\theta}$ and relate to Argand
	including domains, ranges and graphs	diagram
	Differentiate hyperbolic functions	 Use complex roots of unity to solve geometric
	Integrate hyperbolic functions	problems
8	Definitions of inverse hyperbolic functions,	Simple Harmonic Motion ²
9	including domains and ranges	Standard results
	 Derive and use the logarithmic forms of the 	 Solution of SHM equation
	inverse hyperbolic functions	Simple pendulum
10	<u>Further Calculus</u>	 Oscillations involving elastic strings
11	Evaluate improper integrals	<u>Series</u>
12	Integration using partial fractions – to	 Decompose rational functions into partial
13	include quadratic factors in denominator	fractions – to include quadratic factors in
14	Differentiate inverse trig functions	denominator
	Integrate functions of the form	 Use of formulae for sums of integers, squares
	$(a^2 - x^2)^{-1/2}$ and $(a^2 + x^2)^{-1}$ and choose	and cubes to find sums of other series
	the appropriate trigonometric substitutions	Use method of differenced for summation of
	to integrate associated functions	series – to include use of partial fractions
	Integrate functions of the form	 Find the Maclaurin series of a function – to
	$(x^2 + a^2)^{-1/2}$ and $(x^2 - a^2)^{-1/2}$ and choose	include the general term
	the appropriate hyperbolic substitutions to	• Recognise and use the Maclaurin series for e^x ,
	integrate associated functions	$ln(1+x)$, $sin x$, $cos x$ and $(1+x)^n$ – to include
	 Repeated integration by parts 	awareness of the range of values of x for which
	Reduction formulae	they are valid
		 Derive the series expansions of simple
		compound functions
		Use of standard small angle approximations of
		sine, cosine and tangent

 $^{^1}$ Unit 2A topic introduced at this stage to ensure all pre-requisite A2 Pure Maths is covered when teaching Further Maths in parallel. If not teaching in parallel, then this topic could be taught immediately after FM Unit 1 material.

² As above

Week	Teacher 1	Teacher 2
15 16 17	 Differential Equations Use of integrating factor General and particular solutions Use of auxiliary equation to solve 2nd order homogeneous differential equations Solve 2nd order differential equations of the form y" + ay' + by = f(x), where f(x), is a polynomial function an exponential function a trigonometric function not a solution of the corresponding homogeneous equation Use the relationship between the case when the discriminant of the auxiliary equation is positive, zero 	Teacher 2 Centre of Mass System of particles Rods Simple laminae Composite laminae Suspended laminae Frameworks Light pin-jointed frameworks Bow's notation optional Thrusts/tensions
18	and negative Damped Oscillations	_
19	Use of 2 nd order differential equations	Further Centre of Mass • Laminae and solids
20	Force Systems	Use of calculus
21	 Resultant of a system of coplanar forces Replace force system by A single force A couple 	 Composite bodies Suspended bodies Sliding/toppling Further Kinematics
_ 	 A single force plus a couple 	Problems in 3 dimensions including use of
23 24	Restitution • Problems involving • Smooth sphere • Smooth sphere and fixed plane	 calculus and vectors Problems where acceleration is given as function of time, velocity or displacement Examples involving constant power

A2 Further Mathematics Units 1, 2A & 2C

Week	Teacher 1	Teacher 2
1	Further Circular Motion ³	Polar Coordinates
2	Banked corners	Convert between polar and Cartesian
	• Sliding	coordinates
	Overturning (some introductory work on	• Sketch curves with r given as function of θ
	Moments will be required)	Area enclosed by a polar curve
3	• •	Complex numbers
4	Induction	Use of De Moivre's Theorem to find
5	Construction of proofs involving e.g.	 Multiple angle formulae
6	 Sums of series 	 Sums of series
	 Divisibility 	Use of
	 Powers of matrices 	$\circ e^{\mathrm{i}\theta} = \cos\theta + \mathrm{i}\sin\theta$
7	Hyperbolic Functions	$\circ z = re^{\mathrm{i}\theta}$
	• Definitions of $\sinh x$, $\cosh x$ and $\tanh x$,	• Find n th roots of $re^{i\theta}$ and relate to Argand
	including domains, ranges and graphs	diagram
	Differentiate hyperbolic functions	Use complex roots of unity to solve geometric
	Integrate hyperbolic functions	problems
8	 Definitions of inverse hyperbolic functions, 	Simple Harmonic Motion ⁴
9	including domains and ranges	Standard results
	Derive and use the logarithmic forms of the	 Solution of SHM equation
	inverse hyperbolic functions	Simple pendulum
10	<u>Further Calculus</u>	 Oscillations involving elastic strings
11	Evaluate improper integrals	<u>Series</u>
12	Integration using partial fractions – to	 Decompose rational functions into partial
13	include quadratic factors in denominator	fractions – to include quadratic factors in
14	Differentiate inverse trig functions	denominator
	Integrate functions of the form	 Use of formulae for sums of integers, squares
	$(a^2 - x^2)^{-1/2}$ and $(a^2 + x^2)^{-1}$ and choose	and cubes to find sums of other series
	the appropriate trigonometric substitutions	 Use method of differenced for summation of
	to integrate associated functions	series – to include use of partial fractions
	Integrate functions of the form	 Find the Maclaurin series of a function – to
	$(x^2 + a^2)^{-1/2}$ and $(x^2 - a^2)^{-1/2}$ and choose	include the general term
	the appropriate hyperbolic substitutions to	• Recognise and use the Maclaurin series for e^x ,
	integrate associated functions	$ln(1+x)$, $sin x$, $cos x$ and $(1+x)^n$ – to include
	Repeated integration by parts	awareness of the range of values of x for which
	Reduction formulae	they are valid
		 Derive the series expansions of simple
		compound functions
		Use of standard small angle approximations of
		sine, cosine and tangent

³ Unit 2A topic introduced at this stage to ensure all pre-requisite A2 Pure Maths is covered when teaching Further Maths in parallel. If not teaching in parallel, then this topic could be taught immediately after FM Unit 1 material.

⁴ As above

Week	Teacher 1	Teacher 2
15		Centre of Mass
17	 Differential Equations Use of integrating factor General and particular solutions Use of auxiliary equation to solve 2nd order homogeneous differential equations Solve 2nd order differential equations of the form y" + ay' + by = f(x), where f(x), is a polynomial function an exponential function a trigonometric function not a solution of the corresponding homogeneous equation Use the relationship between the case when the discriminant of the auxiliary equation is positive, zero and positive and	 System of particles Rods Simple laminae Composite laminae Suspended laminae Frameworks Light pin-jointed frameworks Bow's notation optional Thrusts/tensions
18	and negative Damped Oscillations	_
19	Use of 2 nd order differential equations	Linear Combinations • Use $E(aX + bY)$ and $Var(aX + bY)$ where
20	Sampling and Estimation	X and Y are independent random variables
21	 Use of Central Limit Theorem Calculate point estimates of the population mean and variance Use of standard error of the mean Calculate confidence limits for the population mean 	Solution of problems involving linear combinations of independent normally distributed variables
22	<u>t - tests</u>	χ^2 tests
23 24	 Understanding of when to use the <i>t</i>-distribution Carry out a hypothesis test for the population mean Formulate a hypothesis and carry out a two-sample or paired-sample t-test for the difference of the sample means 	 Fit a theoretical distribution to given data Use a χ² test with the appropriate number of degrees of freedom to carry out the corresponding goodness of fit test Use a χ² test with the appropriate number of degrees of freedom to test for independence in a contingency table

A2 Further Mathematics Units 1, 2A & 2D

Week	Teacher 1	Teacher 2
1	Further Circular Motion ⁵	Polar Coordinates
2	Banked corners	Convert between polar and Cartesian
	• Sliding	coordinates
	Overturning (some introductory work on	• Sketch curves with r given as function of θ
	Moments will be required)	Area enclosed by a polar curve
3	* *	Complex numbers
4	Induction	Use of De Moivre's Theorem to find
5	Construction of proofs involving e.g.	 Multiple angle formulae
6	Sums of series	 Sums of series
	 Divisibility 	Use of
	 Powers of matrices 	$\circ e^{i\theta} = \cos\theta + i\sin\theta$
7	Hyperbolic Functions	$\circ z = re^{i\theta}$
	• Definitions of $\sinh x$, $\cosh x$ and $\tanh x$,	• Find <i>n</i> th roots of $re^{i\theta}$ and relate to Argand
	including domains, ranges and graphs	diagram
	Differentiate hyperbolic functions	Use complex roots of unity to solve geometric
	Integrate hyperbolic functions	problems
8	Definitions of inverse hyperbolic functions,	Simple Harmonic Motion ⁶
9	including domains and ranges	Standard results
	Derive and use the logarithmic forms of the	Solution of SHM equation
	inverse hyperbolic functions	Simple pendulum
10	Further Calculus	Oscillations involving elastic strings
11	Evaluate improper integrals	Series
12	Integration using partial fractions – to	 Decompose rational functions into partial
13	include quadratic factors in denominator	fractions – to include quadratic factors in
14	Differentiate inverse trig functions	denominator
14	Integrate functions of the form	Use of formulae for sums of integers, squares
	$(a^2 - x^2)^{-1/2}$ and $(a^2 + x^2)^{-1}$ and choose	and cubes to find sums of other series
	the appropriate trigonometric substitutions	Use method of differenced for summation of
	to integrate associated functions	series – to include use of partial fractions
	Integrate functions of the form	 Find the Maclaurin series of a function – to
	$(x^2 + a^2)^{-1/2}$ and $(x^2 - a^2)^{-1/2}$ and choose	include the general term
	the appropriate hyperbolic substitutions to	• Recognise and use the Maclaurin series for e^x ,
	integrate associated functions	$\ln(1+x)$, $\sin x$, $\cos x$ and $(1+x)^n$ – to include
	Repeated integration by parts	awareness of the range of values of x for which
	Reduction formulae	they are valid
	- Reduction for marac	 Derive the series expansions of simple
		compound functions
		 Use of standard small angle approximations of
		O 11
		sine, cosine and tangent

⁵ Unit 2A topic introduced at this stage to ensure all pre-requisite A2 Pure Maths is covered when teaching Further Maths in parallel. If not teaching in parallel, then this topic could be taught immediately after FM Unit 1 material.

⁶ As above

Week	Teacher 1	Teacher 2
15		Centre of Mass
16	 Differential Equations Use of integrating factor General and particular solutions Use of auxiliary equation to solve 2nd order homogeneous differential equations Solve 2nd order differential equations of the 	 System of particles Rods Simple laminae Composite laminae Suspended laminae Frameworks
17	form $y'' + ay' + by = f(x)$, where $f(x)$, is a polynomial function an exponential function a trigonometric function not a solution of the corresponding homogeneous equation Use the relationship between the case when the discriminant of the auxiliary equation is positive, zero and negative	 Light pin-jointed frameworks Bow's notation optional Thrusts/tensions
18	Damped Oscillations	
19	Use of 2 nd order differential equations	Algorithms on GraphsNearest neighbour algorithm
20	Graph Theory • Vertex and edge colouring	 Solution of problems using PERT Two variable linear programming problems
21	 Cutsets and max-flow min-cut theorem Bipartite graphs Hall's marriage theorem 	CountingPrinciple of Inclusion and ExclusionDerangements
22	Group Theory	Rook polynomials
23 24	 Symmetry groups – to include Cyclic group C_n Dihedral group D_{2n} Symmetry groups of the cube, octahedron and tetrahedron Concept of cycle index Use of table of cycle indices for simple symmetry groups Polya's Enumeration Theorem Use of the pattern inventory for 2 colours and the similar result for 3 colours 	 Generating Functions Understating of a generating function Formulation of a generating function to solve simple summation problems Use combinatorial arguments and elementary generating functions to prove simple formulae

A2 Further Mathematics Units 1, 2C & 2D

Week	Teacher 1	Teacher 2
2	Group Theory ⁷ ■ Symmetry groups – to include □ Cyclic group C _n □ Dihedral group D _{2n} □ Symmetry groups of the cube,	 Polar Coordinates Convert between polar and Cartesian coordinates Sketch curves with <i>r</i> given as function of <i>θ</i>
3 4	 Symmetry groups of the cube, octahedron and tetrahedron Concept of cycle index Use of table of cycle indices for simple symmetry groups Polya's Enumeration Theorem Use of the pattern inventory for 2 colours and the similar result for 3 colours 	 Area enclosed by a polar curve Complex numbers Use of De Moivre's Theorem to find Multiple angle formulae Sums of series Use of e^{iθ} = cos θ + i sin θ z = re^{iθ}
5 6 7	 Induction Construction of proofs involving e.g. Sums of series Divisibility Powers of matrices 	 Find nth roots of re^{iθ} and relate to Argand diagram Use complex roots of unity to solve geometric problems
9	 Hyperbolic Functions Definitions of sinh x, cosh x and tanh x, including domains, ranges and graphs Differentiate hyperbolic functions Integrate hyperbolic functions 	 Graph Theory⁸ Vertex and edge colouring Cutsets and max-flow min-cut theorem Bipartite graphs Hall's marriage theorem
10	 Definitions of inverse hyperbolic functions, including domains and ranges Derive and use the logarithmic forms of the inverse hyperbolic functions 	 Series Decompose rational functions into partial fractions – to include quadratic factors in denominator
11	Further Calculus	Use of formulae for sums of integers, squares
12 13	Evaluate improper integralsIntegration using partial fractions – to	and cubes to find sums of other seriesUse method of differenced for summation of
14	 include quadratic factors in denominator Differentiate inverse trig functions Integrate functions of the form (a² - x²)^{-1/2} and (a² + x²)⁻¹ and choose the appropriate trigonometric substitutions to integrate associated functions Integrate functions of the form (x² + a²)^{-1/2} and (x² - a²)^{-1/2} and choose the appropriate hyperbolic substitutions to integrate associated functions Repeated integration by parts Reduction formulae 	 series – to include use of partial fractions Find the Maclaurin series of a function – to include the general term Recognise and use the Maclaurin series for e^x, ln(1+x), sin x, cos x and (1+x)ⁿ – to include awareness of the range of values of x for which they are valid Derive the series expansions of simple compound functions Use of standard small angle approximations of sine, cosine and tangent Algorithms on Graphs
15	Troduction for mande	 Nearest neighbour algorithm Solution of problems using PERT Two variable linear programming problems

 $^{^7}$ Unit 2D topic introduced at this stage to ensure all pre-requisite A2 Pure Maths is covered when teaching Further Maths in parallel. If not teaching in parallel, then this topic could be taught immediately after FM Unit 1 material.

⁸ As above

Week	Teacher 1	Teacher 2
16	<u>Differential Equations</u>	Counting
17	 Use of integrating factor General and particular solutions Use of auxiliary equation to solve 2nd order homogeneous differential equations Solve 2nd order differential equations of the form y" + ay' + by = f(x), where f(x), is a polynomial function an exponential function not a solution of the corresponding homogeneous equation Use the relationship between the case when the discriminant of the auxiliary equation is positive, zero and negative 	 Principle of Inclusion and Exclusion Derangements Rook polynomials
18	Linear Combinations	Generating Functions
19	 Use E(aX + bY) and Var (aX + bY) where X and Y are independent random variables Solution of problems involving linear combinations of independent normally distributed variables 	 Understating of a generating function Formulation of a generating function to solve simple summation problems Use combinatorial arguments and elementary generating functions to prove simple formulae
20		Sampling and Estimation
21 22 23	 t - tests Understanding of when to use the t-distribution Carry out a hypothesis test for the population mean Formulate a hypothesis and carry out a two-sample or paired-sample t-test for the difference of the sample means 	 Use of Central Limit Theorem Calculate point estimates of the population mean and variance Use of standard error of the mean Calculate confidence limits for the population mean \(\frac{\chi^2}{2} \) tests Fit a theoretical distribution to given data
24	amerence of the sample means	 Use a χ² test with the appropriate number of degrees of freedom to carry out the corresponding goodness of fit test Use a χ² test with the appropriate number of degrees of freedom to test for independence in a contingency table