CCEA A2 Mathematics & Further Mathematics # **Teaching Schedules** ## **Updated August 2020** These schedules are based upon shared teaching with equal times for each of 2 teachers. Please note that this teaching order should be followed by all teachers. They will allow either consecutive or parallel teaching of A2 Mathematics and Further Mathematics. #### **Mathematics** This schedule is designed to cover all of Unit 1 first, then followed by Unit 2A and Unit 2B. #### **Further Mathematics** These schedules are designed to cover all of Unit 1 first, then followed by each of the other two Applied units. ## **A2 Mathematics** | Week | Teacher 1 | Teacher 2 | |------------------|--|--| | 1 | Partial Fractions Simplify rational expressions by factorising, cancelling and algebraic division Decompose rational functions into partial fractions | Trigonometry Radian measure Arc length and sector area Definitions of secant, cosecant, cotangent Definitions of arcsin, arccos and arctan | | 2
3
4
5 | Differentiation (i) Differentiation of exponential, logarithmic and trig functions and their related sums, differences and constant multiples Chain rule Product rule | Graphs of each function, including domains and ranges Use of sec² θ = 1 + tan² θ cosec²θ = 1 + cot² θ Compound angle formulae for sine, cosine and | | 6
7
8 | Quotient rule Integration Integrate e^{kx}, ¹/_x, sin kx, cos kx and related functions Area between 2 curves | tangent Double angle formulae Harmonic form Construct proofs involving trig functions and identities Use of trig functions to solve problems in context | | 9 | Integration using Substitution Parts Partial fractions Volumes of revolution | Sequences and Series Simple sequences, including recurrence relations Convergence, divergence and oscillation Use of sigma notation for series | | 10 | Parametric Equations Use parametric equations of curves Convert between parametric and Cartesian forms | Arithmetic Progressions Geometric Progressions | | 11 12 13 | Differentiation(ii) Differentiation of simple functions defined implicitly or parametrically To include second derivatives Differential Equations | Binomial • Expansion of $(a + bx)^n$ for any rational n • Knowledge of range of validity | | 14 | Construct and solve simple differential equations Interpret solution and identify limitations | Functions Definition and terminology Composite function | | 15 | Numerical Methods Use of trapezium rule as an approximation to
the area under a curve | Inverse functions and graphs Modulus function Craph Transformations | | 16 | Location of roots Newton-Raphson method Moments | Graph Transformations Combination of simple transformations | | 17
18
19 | Use moments in simple static contexts – to include Rods Ladders Hinged beams | Kinematics and calculus Motion in a straight line Motion in two dimensions in vector form | | Week | Teacher 1 | Teacher 2 | |----------|---|---| | 20 21 22 | Impulse and Momentum Simple use of impulse and momentum Conservation of linear momentum Problems to involve direct collisions and explosions Normal distribution | Projectiles Solve problems involving projectiles – may include vector format Derive and use formulae for time of flight, range, equation of path of flight | | 23 | Use of the normal distribution as an example of a continuous probability distribution Find probabilities using the normal distribution Selection of an appropriate binomial/normal model for a specific context | Hypothesis Testing Understand and use the language of hypothesis testing Conduct a hypothesis test for the proportion in the binomial distribution | | 24 25 | Probability Use of conditional probability – to include tree diagrams, Venn diagram and two-way tables Use of the conditional probability formula Solution of problems in context | the mean of a normal distribution Interpret results of hypothesis test in context | | 26 | Hypothesis Testing Interpret a correlation coefficient using a p-value or critical value | | ## A2 Further Mathematics Units 1, 2A & 2B | Week | Teacher 1 | Teacher 2 | |------|---|---| | 1 | Further Circular Motion ¹ | Polar Coordinates | | 2 | Banked corners | Convert between polar and Cartesian | | | • Sliding | coordinates | | | Overturning (some introductory work on | • Sketch curves with r given as function of θ | | | Moments will be required) | Area enclosed by a polar curve | | 3 | • • | Complex numbers | | 4 | Induction | Use of De Moivre's Theorem to find | | 5 | Construction of proofs involving e.g. | Multiple angle formulae | | 6 | o Sums of series | Sums of series | | | Divisibility | Use of | | | Powers of matrices | $\circ e^{\mathrm{i}\theta} = \cos\theta + \mathrm{i}\sin\theta$ | | 7 | Hyperbolic Functions | $\circ z = re^{\mathrm{i}\theta}$ | | | Definitions of sinh x, cosh x and tanh x, | • Find n th roots of $re^{i\theta}$ and relate to Argand | | | including domains, ranges and graphs | diagram | | | Differentiate hyperbolic functions | Use complex roots of unity to solve geometric | | | Integrate hyperbolic functions | problems | | 8 | Definitions of inverse hyperbolic functions, | Simple Harmonic Motion ² | | 9 | including domains and ranges | Standard results | | | Derive and use the logarithmic forms of the | Solution of SHM equation | | | inverse hyperbolic functions | Simple pendulum | | 10 | <u>Further Calculus</u> | Oscillations involving elastic strings | | 11 | Evaluate improper integrals | <u>Series</u> | | 12 | Integration using partial fractions – to | Decompose rational functions into partial | | 13 | include quadratic factors in denominator | fractions – to include quadratic factors in | | 14 | Differentiate inverse trig functions | denominator | | | Integrate functions of the form | Use of formulae for sums of integers, squares | | | $(a^2 - x^2)^{-1/2}$ and $(a^2 + x^2)^{-1}$ and choose | and cubes to find sums of other series | | | the appropriate trigonometric substitutions | Use method of differenced for summation of | | | to integrate associated functions | series – to include use of partial fractions | | | Integrate functions of the form | Find the Maclaurin series of a function – to | | | $(x^2 + a^2)^{-1/2}$ and $(x^2 - a^2)^{-1/2}$ and choose | include the general term | | | the appropriate hyperbolic substitutions to | • Recognise and use the Maclaurin series for e^x , | | | integrate associated functions | $ln(1+x)$, $sin x$, $cos x$ and $(1+x)^n$ – to include | | | Repeated integration by parts | awareness of the range of values of x for which | | | Reduction formulae | they are valid | | | | Derive the series expansions of simple | | | | compound functions | | | | Use of standard small angle approximations of | | | | sine, cosine and tangent | $^{^1}$ Unit 2A topic introduced at this stage to ensure all pre-requisite A2 Pure Maths is covered when teaching Further Maths in parallel. If not teaching in parallel, then this topic could be taught immediately after FM Unit 1 material. ² As above | Week | Teacher 1 | Teacher 2 | |----------------|--|---| | 15
16
17 | Differential Equations Use of integrating factor General and particular solutions Use of auxiliary equation to solve 2nd order homogeneous differential equations Solve 2nd order differential equations of the form y" + ay' + by = f(x), where f(x), is a polynomial function an exponential function a trigonometric function not a solution of the corresponding homogeneous equation Use the relationship between the case when the discriminant of the auxiliary equation is positive, zero | Teacher 2 Centre of Mass System of particles Rods Simple laminae Composite laminae Suspended laminae Frameworks Light pin-jointed frameworks Bow's notation optional Thrusts/tensions | | 18 | and negative Damped Oscillations | _ | | 19 | Use of 2 nd order differential equations | Further Centre of Mass • Laminae and solids | | 20 | Force Systems | Use of calculus | | 21 | Resultant of a system of coplanar forces Replace force system by A single force A couple | Composite bodies Suspended bodies Sliding/toppling Further Kinematics | | _ | A single force plus a couple | Problems in 3 dimensions including use of | | 23
24 | Restitution • Problems involving • Smooth sphere • Smooth sphere and fixed plane | calculus and vectors Problems where acceleration is given as function of time, velocity or displacement Examples involving constant power | ## A2 Further Mathematics Units 1, 2A & 2C | Week | Teacher 1 | Teacher 2 | |------|--|---| | 1 | Further Circular Motion ³ | Polar Coordinates | | 2 | Banked corners | Convert between polar and Cartesian | | | • Sliding | coordinates | | | Overturning (some introductory work on | • Sketch curves with r given as function of θ | | | Moments will be required) | Area enclosed by a polar curve | | 3 | • • | Complex numbers | | 4 | Induction | Use of De Moivre's Theorem to find | | 5 | Construction of proofs involving e.g. | Multiple angle formulae | | 6 | Sums of series | Sums of series | | | Divisibility | Use of | | | Powers of matrices | $\circ e^{\mathrm{i}\theta} = \cos\theta + \mathrm{i}\sin\theta$ | | 7 | Hyperbolic Functions | $\circ z = re^{\mathrm{i}\theta}$ | | | • Definitions of $\sinh x$, $\cosh x$ and $\tanh x$, | • Find n th roots of $re^{i\theta}$ and relate to Argand | | | including domains, ranges and graphs | diagram | | | Differentiate hyperbolic functions | Use complex roots of unity to solve geometric | | | Integrate hyperbolic functions | problems | | 8 | Definitions of inverse hyperbolic functions, | Simple Harmonic Motion ⁴ | | 9 | including domains and ranges | Standard results | | | Derive and use the logarithmic forms of the | Solution of SHM equation | | | inverse hyperbolic functions | Simple pendulum | | 10 | <u>Further Calculus</u> | Oscillations involving elastic strings | | 11 | Evaluate improper integrals | <u>Series</u> | | 12 | Integration using partial fractions – to | Decompose rational functions into partial | | 13 | include quadratic factors in denominator | fractions – to include quadratic factors in | | 14 | Differentiate inverse trig functions | denominator | | | Integrate functions of the form | Use of formulae for sums of integers, squares | | | $(a^2 - x^2)^{-1/2}$ and $(a^2 + x^2)^{-1}$ and choose | and cubes to find sums of other series | | | the appropriate trigonometric substitutions | Use method of differenced for summation of | | | to integrate associated functions | series – to include use of partial fractions | | | Integrate functions of the form | Find the Maclaurin series of a function – to | | | $(x^2 + a^2)^{-1/2}$ and $(x^2 - a^2)^{-1/2}$ and choose | include the general term | | | the appropriate hyperbolic substitutions to | • Recognise and use the Maclaurin series for e^x , | | | integrate associated functions | $ln(1+x)$, $sin x$, $cos x$ and $(1+x)^n$ – to include | | | Repeated integration by parts | awareness of the range of values of x for which | | | Reduction formulae | they are valid | | | | Derive the series expansions of simple | | | | compound functions | | | | Use of standard small angle approximations of | | | | sine, cosine and tangent | ³ Unit 2A topic introduced at this stage to ensure all pre-requisite A2 Pure Maths is covered when teaching Further Maths in parallel. If not teaching in parallel, then this topic could be taught immediately after FM Unit 1 material. ⁴ As above | Week | Teacher 1 | Teacher 2 | |-------|--|--| | 15 | | Centre of Mass | | 17 | Differential Equations Use of integrating factor General and particular solutions Use of auxiliary equation to solve 2nd order homogeneous differential equations Solve 2nd order differential equations of the form y" + ay' + by = f(x), where f(x), is a polynomial function an exponential function a trigonometric function not a solution of the corresponding homogeneous equation Use the relationship between the case when the discriminant of the auxiliary equation is positive, zero and positive and | System of particles Rods Simple laminae Composite laminae Suspended laminae Frameworks Light pin-jointed frameworks Bow's notation optional Thrusts/tensions | | 18 | and negative Damped Oscillations | _ | | 19 | Use of 2 nd order differential equations | Linear Combinations • Use $E(aX + bY)$ and $Var(aX + bY)$ where | | 20 | Sampling and Estimation | X and Y are independent random variables | | 21 | Use of Central Limit Theorem Calculate point estimates of the population mean and variance Use of standard error of the mean Calculate confidence limits for the population mean | Solution of problems involving linear
combinations of independent normally
distributed variables | | 22 | <u>t - tests</u> | χ^2 tests | | 23 24 | Understanding of when to use the <i>t</i>-distribution Carry out a hypothesis test for the population mean Formulate a hypothesis and carry out a two-sample or paired-sample t-test for the difference of the sample means | Fit a theoretical distribution to given data Use a χ² test with the appropriate number of degrees of freedom to carry out the corresponding goodness of fit test Use a χ² test with the appropriate number of degrees of freedom to test for independence in a contingency table | ## A2 Further Mathematics Units 1, 2A & 2D | Week | Teacher 1 | Teacher 2 | |------|--|---| | 1 | Further Circular Motion ⁵ | Polar Coordinates | | 2 | Banked corners | Convert between polar and Cartesian | | | • Sliding | coordinates | | | Overturning (some introductory work on | • Sketch curves with r given as function of θ | | | Moments will be required) | Area enclosed by a polar curve | | 3 | * * | Complex numbers | | 4 | Induction | Use of De Moivre's Theorem to find | | 5 | Construction of proofs involving e.g. | Multiple angle formulae | | 6 | Sums of series | Sums of series | | | Divisibility | Use of | | | Powers of matrices | $\circ e^{i\theta} = \cos\theta + i\sin\theta$ | | 7 | Hyperbolic Functions | $\circ z = re^{i\theta}$ | | | • Definitions of $\sinh x$, $\cosh x$ and $\tanh x$, | • Find <i>n</i> th roots of $re^{i\theta}$ and relate to Argand | | | including domains, ranges and graphs | diagram | | | Differentiate hyperbolic functions | Use complex roots of unity to solve geometric | | | Integrate hyperbolic functions | problems | | 8 | Definitions of inverse hyperbolic functions, | Simple Harmonic Motion ⁶ | | 9 | including domains and ranges | Standard results | | | Derive and use the logarithmic forms of the | Solution of SHM equation | | | inverse hyperbolic functions | Simple pendulum | | 10 | Further Calculus | Oscillations involving elastic strings | | 11 | Evaluate improper integrals | Series | | 12 | Integration using partial fractions – to | Decompose rational functions into partial | | 13 | include quadratic factors in denominator | fractions – to include quadratic factors in | | 14 | Differentiate inverse trig functions | denominator | | 14 | Integrate functions of the form | Use of formulae for sums of integers, squares | | | $(a^2 - x^2)^{-1/2}$ and $(a^2 + x^2)^{-1}$ and choose | and cubes to find sums of other series | | | the appropriate trigonometric substitutions | Use method of differenced for summation of | | | to integrate associated functions | series – to include use of partial fractions | | | Integrate functions of the form | Find the Maclaurin series of a function – to | | | $(x^2 + a^2)^{-1/2}$ and $(x^2 - a^2)^{-1/2}$ and choose | include the general term | | | the appropriate hyperbolic substitutions to | • Recognise and use the Maclaurin series for e^x , | | | integrate associated functions | $\ln(1+x)$, $\sin x$, $\cos x$ and $(1+x)^n$ – to include | | | Repeated integration by parts | awareness of the range of values of x for which | | | Reduction formulae | they are valid | | | - Reduction for marac | Derive the series expansions of simple | | | | compound functions | | | | Use of standard small angle approximations of | | | | O 11 | | | | sine, cosine and tangent | ⁵ Unit 2A topic introduced at this stage to ensure all pre-requisite A2 Pure Maths is covered when teaching Further Maths in parallel. If not teaching in parallel, then this topic could be taught immediately after FM Unit 1 material. ⁶ As above | Week | Teacher 1 | Teacher 2 | |-------|--|--| | 15 | | Centre of Mass | | 16 | Differential Equations Use of integrating factor General and particular solutions Use of auxiliary equation to solve 2nd order homogeneous differential equations Solve 2nd order differential equations of the | System of particles Rods Simple laminae Composite laminae Suspended laminae Frameworks | | 17 | form $y'' + ay' + by = f(x)$, where $f(x)$, is a polynomial function an exponential function a trigonometric function not a solution of the corresponding homogeneous equation Use the relationship between the case when the discriminant of the auxiliary equation is positive, zero and negative | Light pin-jointed frameworks Bow's notation optional Thrusts/tensions | | 18 | Damped Oscillations | | | 19 | Use of 2 nd order differential equations | Algorithms on GraphsNearest neighbour algorithm | | 20 | Graph Theory • Vertex and edge colouring | Solution of problems using PERT Two variable linear programming problems | | 21 | Cutsets and max-flow min-cut theorem Bipartite graphs Hall's marriage theorem | CountingPrinciple of Inclusion and ExclusionDerangements | | 22 | Group Theory | Rook polynomials | | 23 24 | Symmetry groups – to include Cyclic group C_n Dihedral group D_{2n} Symmetry groups of the cube, octahedron and tetrahedron Concept of cycle index Use of table of cycle indices for simple symmetry groups Polya's Enumeration Theorem Use of the pattern inventory for 2 colours and the similar result for 3 colours | Generating Functions Understating of a generating function Formulation of a generating function to solve simple summation problems Use combinatorial arguments and elementary generating functions to prove simple formulae | ## A2 Further Mathematics Units 1, 2C & 2D | Week | Teacher 1 | Teacher 2 | |-------------|--|--| | 2 | Group Theory ⁷ ■ Symmetry groups – to include □ Cyclic group C _n □ Dihedral group D _{2n} □ Symmetry groups of the cube, | Polar Coordinates Convert between polar and Cartesian coordinates Sketch curves with <i>r</i> given as function of <i>θ</i> | | 3 4 | Symmetry groups of the cube, octahedron and tetrahedron Concept of cycle index Use of table of cycle indices for simple symmetry groups Polya's Enumeration Theorem Use of the pattern inventory for 2 colours and the similar result for 3 colours | Area enclosed by a polar curve Complex numbers Use of De Moivre's Theorem to find Multiple angle formulae Sums of series Use of e^{iθ} = cos θ + i sin θ z = re^{iθ} | | 5
6
7 | Induction Construction of proofs involving e.g. Sums of series Divisibility Powers of matrices | Find nth roots of re^{iθ} and relate to Argand diagram Use complex roots of unity to solve geometric problems | | 9 | Hyperbolic Functions Definitions of sinh x, cosh x and tanh x, including domains, ranges and graphs Differentiate hyperbolic functions Integrate hyperbolic functions | Graph Theory⁸ Vertex and edge colouring Cutsets and max-flow min-cut theorem Bipartite graphs Hall's marriage theorem | | 10 | Definitions of inverse hyperbolic functions, including domains and ranges Derive and use the logarithmic forms of the inverse hyperbolic functions | Series Decompose rational functions into partial fractions – to include quadratic factors in denominator | | 11 | Further Calculus | Use of formulae for sums of integers, squares | | 12
13 | Evaluate improper integralsIntegration using partial fractions – to | and cubes to find sums of other seriesUse method of differenced for summation of | | 14 | include quadratic factors in denominator Differentiate inverse trig functions Integrate functions of the form (a² - x²)^{-1/2} and (a² + x²)⁻¹ and choose the appropriate trigonometric substitutions to integrate associated functions Integrate functions of the form (x² + a²)^{-1/2} and (x² - a²)^{-1/2} and choose the appropriate hyperbolic substitutions to integrate associated functions Repeated integration by parts Reduction formulae | series – to include use of partial fractions Find the Maclaurin series of a function – to include the general term Recognise and use the Maclaurin series for e^x, ln(1+x), sin x, cos x and (1+x)ⁿ – to include awareness of the range of values of x for which they are valid Derive the series expansions of simple compound functions Use of standard small angle approximations of sine, cosine and tangent Algorithms on Graphs | | 15 | Troduction for mande | Nearest neighbour algorithm Solution of problems using PERT Two variable linear programming problems | $^{^7}$ Unit 2D topic introduced at this stage to ensure all pre-requisite A2 Pure Maths is covered when teaching Further Maths in parallel. If not teaching in parallel, then this topic could be taught immediately after FM Unit 1 material. ⁸ As above | Week | Teacher 1 | Teacher 2 | |----------------|---|---| | 16 | <u>Differential Equations</u> | Counting | | 17 | Use of integrating factor General and particular solutions Use of auxiliary equation to solve 2nd order homogeneous differential equations Solve 2nd order differential equations of the form y" + ay' + by = f(x), where f(x), is a polynomial function an exponential function not a solution of the corresponding homogeneous equation Use the relationship between the case when the discriminant of the auxiliary equation is positive, zero and negative | Principle of Inclusion and Exclusion Derangements Rook polynomials | | 18 | Linear Combinations | Generating Functions | | 19 | Use E(aX + bY) and Var (aX + bY) where X and Y are independent random variables Solution of problems involving linear combinations of independent normally distributed variables | Understating of a generating function Formulation of a generating function to solve simple summation problems Use combinatorial arguments and elementary generating functions to prove simple formulae | | 20 | | Sampling and Estimation | | 21
22
23 | t - tests Understanding of when to use the t-distribution Carry out a hypothesis test for the population mean Formulate a hypothesis and carry out a two-sample or paired-sample t-test for the difference of the sample means | Use of Central Limit Theorem Calculate point estimates of the population mean and variance Use of standard error of the mean Calculate confidence limits for the population mean \(\frac{\chi^2}{2} \) tests Fit a theoretical distribution to given data | | 24 | amerence of the sample means | Use a χ² test with the appropriate number of degrees of freedom to carry out the corresponding goodness of fit test Use a χ² test with the appropriate number of degrees of freedom to test for independence in a contingency table |