
FACT FILES
Software Systems Development

AS LEVEL

For first teaching from September 2013

For first AS award in Summer 2014

For first A Level award in Summer 2015

AS2 Event Driven Programming
(ii) UNDERSTANDING EVENTS

Ev
en

t D
riv

en
 P

ro
gr

am
m

in
g

1

Students should be able to:
- 	 demonstrate and apply their understanding of events in

the implementation of an event driven application;
- 	 use triggers, for example button, mouse clicks, key

presses.

AS2 Event Driven Programming
(ii) UNDERSTANDING EVENTS

Learning Outcomes

SOFTWARE SYSTEMS DEVELOPMENT
AS2 EVENT DRIVEN PROGRAMMING

FACT FILE (ii) UNDERSTANDING EVENTS

LEARNING OUTCOMES

Students should be able to:

- demonstrate and apply their understanding of events in the implementation of an
event driven application;

- use triggers, for example button, mouse clicks, key presses.

COURSE CONTENT

An event is an action that occurs to a control which ’fires’ the associated method and
executes the code within it. Microsoft provides many events for the controls and sends
additional information as parameters to the corresponding method. This may be
triggered by a mouse or key movement.

The C# GUI Environment: - selecting an event to code

Design Area double click form to switch to code window:- form_load(…) event or
 double click on a control to go to its main event :- btnClose_click(….) or
 select required event from the Event section in Properties window

 Click to show Events for the selected control

Click to return to Properties of selected control

Course Content

An event is an action that occurs to a control which ’fires’
the associated method and executes the code within it.
Microsoft provides many events for the controls and sends
additional information as parameters to the corresponding
method. This may be triggered by a mouse or key
movement.

The C# GUI Environment: - selecting an event to code

NB: The following code is added automatically when an event method is coded by the user.
	 this.btnClose.Click += new System.EventHandler(this.btnClose_Click);
 		 Event 				 associated method
(Microsoft creates methods to handle events through the class EventHandler.)

In code the intellisense window opens when a control name is typed with a dot. The user can choose a Property, an
Event or a Method. An icon precedes each and helps to categorise.

Ev
en

t D
riv

en
 P

ro
gr

am
m

in
g

2

C# - Icons used to differentiate between Properties, Methods and Events.

C# Notes on Events: - Click
	 http://msdn.microsoft.com/en-us/library/system.windows.forms.control.click.aspx

C# Common Windows Control Events

The most common event is the click event which applies to a large percentage of the controls provided by Microsoft. The
DoubleClick event is very useful to ensure validity of user action.

The load event is fired automatically on instantiation of the form and can be used to initialise values and reset control
Properties.

Below is a sample of the form load event and the click event for a Button control - btnClose.

Continued on next page.

NB: The following code is added automatically when an event method is coded by the
user.

this.btnClose.Click += new System.EventHandler(this.btnClose_Click);
Event associated method

(Microsoft creates methods to handle events through the class EventHandler.)

In code the intellisense window opens when a control name is typed with a dot. The
user can choose a Property, an Event or a Method. An icon precedes each and helps to
categorise.

C# - Icons used to differentiate between Properties, methods and events.

Property Method Event

C# Notes on Events: - Click

http://msdn.microsoft.com/en-us/library/system.windows.forms.control.click.aspx

C# Common Windows Control Events

The most common event is the click event which applies to a large percentage of the
controls provided by Microsoft. The DoubleClick event is very useful to ensure validity of
user action.

The load event is fired automatically on instantiation of the form and can be used to
initialise values and reset control Properties.

Below is a sample of the form load event and the click event for a Button control -
btnClose.

namespace ProjInitial
{
 public partial class FrmIntro : Form
 {
 public FrmIntro()
 {
 InitializeComponent();
 }

 private void FrmIntro_Load(object sender, EventArgs e)
 {
 lblTitle.Text = "Hangman";
 lblTitle.BackColor = Color.Azure;
 lblTitle.ForeColor = Color.DarkBlue;
 lblTitle.Font = new System.Drawing.Font("Comic Sans", 36F);

 }
 private void btnClose_Click(object sender, EventArgs e)
 {
 this.Close();
 }
 }
}

Events Sample for RadioButtons on the Simple Calculator

RadioButtons:- rdoAdd, rdoMinus, rdoMultiply, rdoDivide lblOperator

rdoAdd_CheckedChanged() is the common event for the RadioButton but is fired when
the state changes from true to false a well as from false to true.
In the Calculator example the operator should only be set when the RadioButton is true.
The Click event is more appropriate as it fires on the change from false to true.

Events Sample for RadioButtons on the Simple Calculator

namespace ProjInitial
{
 public partial class FrmIntro : Form
 {
 public FrmIntro()
 {
 InitializeComponent();
 }

 private void FrmIntro_Load(object sender, EventArgs e)
 {
 lblTitle.Text = "Hangman";
 lblTitle.BackColor = Color.Azure;
 lblTitle.ForeColor = Color.DarkBlue;
 lblTitle.Font = new System.Drawing.Font("Comic Sans", 36F);

 }
 private void btnClose_Click(object sender, EventArgs e)
 {
 this.Close();
 }
 }
}

Events Sample for RadioButtons on the Simple Calculator

RadioButtons:- rdoAdd, rdoMinus, rdoMultiply, rdoDivide lblOperator

rdoAdd_CheckedChanged() is the common event for the RadioButton but is fired when
the state changes from true to false a well as from false to true.
In the Calculator example the operator should only be set when the RadioButton is true.
The Click event is more appropriate as it fires on the change from false to true.

rdoAdd_CheckedChanged() is the common event for the RadioButton but is fired when the state changes from true to false a
well as from false to true.

In the Calculator example the operator should only be set when the RadioButton is true. The Click event is more appropriate as
it fires on the change from false to true.

NB: The action required is to set the lblOperator Text property to the Text Property of the RadioBuuton. As this is repeated for
the four RadioButtons it is more efficient to apply the one event method to all four controls.

NB: The action required is to set the lblOperator Text property to the Text Property of
the RadioBuuton. As this is repeated for the four RadioButtons it is more efficient to
apply the one event method to all four controls.

 private void FrmCalc_Load(object sender, EventArgs e)
 {
 // as the radio buttons do the same function i.e.
 // set the lblOperator to character in Text property
 // use the one event method to handle all four events.
 rdoDivide.Click += new System.EventHandler(rdoAdd_Click);
 rdoMultiply.Click += new System.EventHandler(rdoAdd_Click);
 rdoMinus.Click += new System.EventHandler(rdoAdd_Click);
 }

The parameter ‘sender’, passed to the method, can be used to determine the operator if
required.

 private void rdoAdd_Click(object sender, EventArgs e)
 {
 // sender is the control where the event was initiated
 // cast as a RadioButton to access the properties and methods of that control
 lblOperator.Text = ((RadioButton)sender).Text;
 }

Setting date and time on a label of the form

From the system :-
In the Load event of the required form add the following code

lbldate.Text = DateTime.Now;

From a Selected date event in the MonthCalendar control :-
lblDate.Text = this.monthCalendar1.SelectionRange.Start.ToShortDateString();

From a ValueChanged event in the dateTimePicker control :-
lblDate.Text = this.dateTimePicker1.Value. ToShortDateString();

NB: can also set dateTimePicker to a date e.g.

When using a DateTimePicker on the form it can be set to current date/time (eg. on for
m load)

this.dateTimePicker1.Value = DateTime.Now;

The parameter ‘sender’, passed to the method, can be used to determine the operator if required.

NB: The action required is to set the lblOperator Text property to the Text Property of
the RadioBuuton. As this is repeated for the four RadioButtons it is more efficient to
apply the one event method to all four controls.

 private void FrmCalc_Load(object sender, EventArgs e)
 {
 // as the radio buttons do the same function i.e.
 // set the lblOperator to character in Text property
 // use the one event method to handle all four events.
 rdoDivide.Click += new System.EventHandler(rdoAdd_Click);
 rdoMultiply.Click += new System.EventHandler(rdoAdd_Click);
 rdoMinus.Click += new System.EventHandler(rdoAdd_Click);
 }

The parameter ‘sender’, passed to the method, can be used to determine the operator if
required.

 private void rdoAdd_Click(object sender, EventArgs e)
 {
 // sender is the control where the event was initiated
 // cast as a RadioButton to access the properties and methods of that control
 lblOperator.Text = ((RadioButton)sender).Text;
 }

Setting date and time on a label of the form

From the system :-
In the Load event of the required form add the following code

lbldate.Text = DateTime.Now;

From a Selected date event in the MonthCalendar control :-
lblDate.Text = this.monthCalendar1.SelectionRange.Start.ToShortDateString();

From a ValueChanged event in the dateTimePicker control :-
lblDate.Text = this.dateTimePicker1.Value. ToShortDateString();

NB: can also set dateTimePicker to a date e.g.

When using a DateTimePicker on the form it can be set to current date/time (eg. on for
m load)

this.dateTimePicker1.Value = DateTime.Now;

Setting date and time on a label of the form

From the system:-
In the Load event of the required form add the following code:-
	 lbldate.Text = DateTime.Now;

From a Selected date event in the MonthCalendar control:-
	 lblDate.Text = this.monthCalendar1.SelectionRange.Start.ToShortDateString();

From a ValueChanged event in the dateTimePicker control:-
	 lblDate.Text = this.dateTimePicker1.Value. ToShortDateString();

Ev
en

t D
riv

en
 P

ro
gr

am
m

in
g

4

NB: can also set dateTimePicker to a date e.g.

When using a DateTimePicker on the form it can be set to current date/time (e.g. on form load)
	 this.dateTimePicker1.Value = DateTime.Now;

ListView Control - eventsListView Control - events

private void listView1_SelectedIndexChanged(object sender, EventArgs e)
 {

 }

private void listView1_Click(object sender, EventArgs e)
 {

 }

Note the use of the form_load and private custom methods used to populate the
listView control.

Example 1 – populating the listView from a binary file Treatments.bin :-

private void FrmAddAppointment_Load(object sender, EventArgs e)
 {
 ListViewItem item = new ListViewItem();
 Stream sr;
 BinaryFormatter bf = new BinaryFormatter();

 Treatment[] treats;

 // for testing purposes creation of treatments is called here

 //- comment out after executing once
 // treatment details would normally be added through form (FrmAddTreatment)

 // and be written to the binary file.

 createTreatments();
 //read treatment details from file to array object
 try
 {
 sr = File.OpenRead("Treatments.bin");
 treats = (Treatment[])bf.Deserialize(sr);

 //add each treatment to the ListView
 sr.Close();
 for (int x = 0; x < treats.Length; x++)
 {
 item = lsvTreatments.Items.Add(treats[x].TreatmentNo.ToString());
 item.SubItems.Add(treats[x].Description);
 item.SubItems.Add(treats[x].Price.ToString());
 item.SubItems.Add(treats[x].Duration.ToString());
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine("" + ex.Message);
 }

 }

 private void populateTreatmentArray(Treatment [] treats)
 {

Note the use of the form_load and private custom methods used to populate the listView control.

Example 1 – populating the listView from a binary file Treatments.bin :-

ListView Control - events

private void listView1_SelectedIndexChanged(object sender, EventArgs e)
 {

 }

private void listView1_Click(object sender, EventArgs e)
 {

 }

Note the use of the form_load and private custom methods used to populate the
listView control.

Example 1 – populating the listView from a binary file Treatments.bin :-

private void FrmAddAppointment_Load(object sender, EventArgs e)
 {
 ListViewItem item = new ListViewItem();
 Stream sr;
 BinaryFormatter bf = new BinaryFormatter();

 Treatment[] treats;

 // for testing purposes creation of treatments is called here

 //- comment out after executing once
 // treatment details would normally be added through form (FrmAddTreatment)

 // and be written to the binary file.

 createTreatments();
 //read treatment details from file to array object
 try
 {
 sr = File.OpenRead("Treatments.bin");
 treats = (Treatment[])bf.Deserialize(sr);

 //add each treatment to the ListView
 sr.Close();
 for (int x = 0; x < treats.Length; x++)
 {
 item = lsvTreatments.Items.Add(treats[x].TreatmentNo.ToString());
 item.SubItems.Add(treats[x].Description);
 item.SubItems.Add(treats[x].Price.ToString());
 item.SubItems.Add(treats[x].Duration.ToString());
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine("" + ex.Message);
 }

 }

 private void populateTreatmentArray(Treatment [] treats)
 {

 treats[0] = new Treatment(1000, "Cut", 25.0,25);
 treats[1] = new Treatment(1001, "Wash and Blow-Dry", 15, 30);
 treats[2] = new Treatment(1002, "Colour", 65.75,120);
 treats[3] = new Treatment(1003, "Extensions", 124.50,100);
 treats[4] = new Treatment(1004, "Wedding prep", 150.0,120);
 }
 private void createTreatments()
 {
 Stream sw;
 BinaryFormatter bf = new BinaryFormatter();
 Treatment[] treats = new Treatment[5];
 populateTreatmentArray(treats);
 try
 {
 // write cars array object to file
 sw = File.Open("Treatments.bin", FileMode.Create);
 bf.Serialize(sw, treats);
 sw.Close();
 }
 catch (SerializationException e)
 {
 Console.WriteLine("" + e.Message);
 }

 }

The following example shows how Listview controls can be used for selection/display in
an Order Processing activity .
Data can be selected from one Listview control (‘available stock’) and moved to another
Listview control (‘ordered stock’). It is removed from the ‘available stock’ and so
prevents duplicate stock numbers in an order.

To select an item from a ListView use the click event (or DoubleClick event –
deleting)

private void lsvStock_Click(object sender, EventArgs e)
{
 int no;
 ListViewItem itm = new ListViewItem();

 // get index of first selected row item and retrieve data to itm
 no = lsvStock.SelectedIndices[0];
 itm = lsvStock.Items[no] ;
 // remove item from ListView as it has been selected for order
 lsvStock.Items[no].Remove();

 // Add item to the ‘buy’ ListView
 lsvBuy.Items.Add(itm);
}

Ev
en

t D
riv

en
 P

ro
gr

am
m

in
g

5

 treats[0] = new Treatment(1000, "Cut", 25.0,25);
 treats[1] = new Treatment(1001, "Wash and Blow-Dry", 15, 30);
 treats[2] = new Treatment(1002, "Colour", 65.75,120);
 treats[3] = new Treatment(1003, "Extensions", 124.50,100);
 treats[4] = new Treatment(1004, "Wedding prep", 150.0,120);
 }
 private void createTreatments()
 {
 Stream sw;
 BinaryFormatter bf = new BinaryFormatter();
 Treatment[] treats = new Treatment[5];
 populateTreatmentArray(treats);
 try
 {
 // write cars array object to file
 sw = File.Open("Treatments.bin", FileMode.Create);
 bf.Serialize(sw, treats);
 sw.Close();
 }
 catch (SerializationException e)
 {
 Console.WriteLine("" + e.Message);
 }

 }

The following example shows how Listview controls can be used for selection/display in
an Order Processing activity .
Data can be selected from one Listview control (‘available stock’) and moved to another
Listview control (‘ordered stock’). It is removed from the ‘available stock’ and so
prevents duplicate stock numbers in an order.

To select an item from a ListView use the click event (or DoubleClick event –
deleting)

private void lsvStock_Click(object sender, EventArgs e)
{
 int no;
 ListViewItem itm = new ListViewItem();

 // get index of first selected row item and retrieve data to itm
 no = lsvStock.SelectedIndices[0];
 itm = lsvStock.Items[no] ;
 // remove item from ListView as it has been selected for order
 lsvStock.Items[no].Remove();

 // Add item to the ‘buy’ ListView
 lsvBuy.Items.Add(itm);
}

The following example shows how Listview controls can be used for selection/display in an Order Processing activity .
Data can be selected from one Listview control (‘available stock’) and moved to another Listview control (‘ordered stock’). It is
removed from the ‘available stock’ and so prevents duplicate stock numbers in an order.

To select an item from a ListView use the click event (or DoubleClick event – deleting)

 treats[0] = new Treatment(1000, "Cut", 25.0,25);
 treats[1] = new Treatment(1001, "Wash and Blow-Dry", 15, 30);
 treats[2] = new Treatment(1002, "Colour", 65.75,120);
 treats[3] = new Treatment(1003, "Extensions", 124.50,100);
 treats[4] = new Treatment(1004, "Wedding prep", 150.0,120);
 }
 private void createTreatments()
 {
 Stream sw;
 BinaryFormatter bf = new BinaryFormatter();
 Treatment[] treats = new Treatment[5];
 populateTreatmentArray(treats);
 try
 {
 // write cars array object to file
 sw = File.Open("Treatments.bin", FileMode.Create);
 bf.Serialize(sw, treats);
 sw.Close();
 }
 catch (SerializationException e)
 {
 Console.WriteLine("" + e.Message);
 }

 }

The following example shows how Listview controls can be used for selection/display in
an Order Processing activity .
Data can be selected from one Listview control (‘available stock’) and moved to another
Listview control (‘ordered stock’). It is removed from the ‘available stock’ and so
prevents duplicate stock numbers in an order.

To select an item from a ListView use the click event (or DoubleClick event –
deleting)

private void lsvStock_Click(object sender, EventArgs e)
{
 int no;
 ListViewItem itm = new ListViewItem();

 // get index of first selected row item and retrieve data to itm
 no = lsvStock.SelectedIndices[0];
 itm = lsvStock.Items[no] ;
 // remove item from ListView as it has been selected for order
 lsvStock.Items[no].Remove();

 // Add item to the ‘buy’ ListView
 lsvBuy.Items.Add(itm);
}

QUESTIONS

Q1	 Which event would you recommend for setting today’s date onto a Label, lblDate, on a form? Write the code
which would show this.

	 Include code to reset the fontsize of the lblDate to 14.

Q2	 A game project could contain an introduction form where a player could select a ‘cartoon’ character’s name
from a ListBox named lstPlayer, to represent him/her.

	 Which ListBox event would you activate and how would you reference the selected name in method code.
(Assume a global String, strPlayer, variable is defined to hold the selectedname)

Q3	 The form in Question 2 is modified to contain an ImageList of the cartoon characters’ pictures stored in the
same order as the cartoon characters’ names in lstPlayer. An Image control, imgSelectedPlayer, is also added
to the form.

	 What code would you add to display the relevant player image in imgSelectedPlayer and where would you
place it.

Ev
en

t D
riv

en
 P

ro
gr

am
m

in
g

