

Centre Number				
	Can	didat	e Nu	mber

General Certificate of Secondary Education 2023–2024

Single Award Science: Physics

Unit 3 Higher Tier

[GSA32]

GSA32

FRIDAY 7 JUNE 2024, AFTERNOON

TIME

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

You must answer the questions in the spaces provided.

Do not write outside the boxed area on each page or on blank pages.

Complete in black ink only. Do not write with a gel pen.

Answer **all nine** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 60.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

Quality of written communication will be assessed in Question **2(c)**.

14364

20GSA3201

- Reasertin 200 J Learning a 20 7 Learning a Ð a Ð a Ð a Ð a Ð Q Ð a Ð a D a 20 Learning a Ð a D G Ð a Ð a Ð a Ð Œ Ð a Ð a Ð D a D a Ð C.
- **1** (a) A student used the following circuit to investigate how the length of a piece of wire affects resistance.

Measurements of current and voltage were recorded for different lengths of wire.

(i) On the diagram above, complete the symbols for the meters used to measure the current and voltage.

[2]

When electricity is flowing, the wire will become hot and its resistance will change.

(ii) Name the component in the circuit that controls when the current flows.

[1]

14364

20GSA3202

(b) Use the equation:

resistance = voltage current

to calculate the resistance of this piece of wire. Show your working out.

14364

__Ω [2] **[Turn over**

20GSA3203

(c) A student set up the circuit below using two identical bulbs.

(i) Complete the following sentence.

The bulbs in this circuit are connected in _____. [1]

The current was measured at points X, Y and Z in the circuit.

(ii) Complete the table below to give the current measured at positions X and Y.

Circuit position	Current/A
x	
Y	
Z	0.5

[2]

Circle your answer.

20GSA3204

BLANK PAGE

DO NOT WRITE ON THIS PAGE

(Questions continue overleaf)

14364

[Turn over

20GSA3205

2 The table below shows information about four of the planets in the Solar System.

	Distance from Sun/ million km	Orbital time/ years	Average Temperature/°C
Jupiter	778	12	-110
Saturn	1434	29	-140
Uranus	2873	84	-195
Neptune	4495	164	-200

(a) State two trends shown by this data.

1			
2			
		 	 [2]

The table below gives information about an astronaut travelling from the Earth to the Moon.

	Mass/ kg	Gravity/ N/kg	Weight/ N
Earth	70	10	700
Space		0	0
Moon	70	1.7	119

(b) Complete the table to give the mass of this astronaut in Space.

[1]

14364

20GSA3206

C.

(c) Describe fully the structure of the inner Solar System.

Your answer should include:

- the names and order of the four inner planets;
- the surface material of the inner planets;
- a description of how planets move and the name of the force involved; and
- examples of natural and artificial objects moving around planets.

In this question you will be assessed on your written communication skills including the use of specialist scientific terms.

14364

[Turn over

_____ [6]

20GSA3207

20GSA3208

Reasertin

4 The table below shows information about the amount of biofuels used for road transport in the UK.

Voor	Percentage of road transport using biofuel/%			
rear	Bioethanol	Biodiesel		
2016	4.8	2.4		
2018	5.0	3.9		
2020	5.6	3.8		

In 2018, the UK Government set a target to reach 10% of road transport fuel to be biofuel by 2020.

- (a) This target was not met. Calculate by how much it was below the target.
 - _____% [1]

[2]

_____ [1]

- (b) Car manufacturers have been trying to minimise reliance on fossil fuels using extenders and substitutes.
 - (i) Explain the difference between an extender and a substitute.

(ii) Name one extender.

30

[Turn over

20GSA3209

20GSA3210

Ð

C.

(b) In a collision the less force exerted on the driver, the less injury will occur.

The force exerted on the driver depends on how long it takes the driver to come to a complete stop inside the car.

Wearing a seat belt increases the amount of time it takes a driver to stop.

The table below shows the times from a car hitting an object to the driver coming to a complete stop and the forces that are exerted on the driver.

Time for driver to come to a complete stop/s	Force exerted on the driver/N
0.2	12 000
0.4	6000
0.6	4000
0.8	3000
1.0	1000

(i) Use the information in the table to explain why it is safer to wear a seat belt.

(ii) How does a crumple zone act as a safety feature in a car collision?

[Turn over

____ [2]

_____ [1]

14364

6 Sound is an example of a longitudinal wave. (a) Describe the movement of particles in a longitudinal wave. [2] The table below shows how the maximum frequency of sound heard by a human changes with age. Maximum frequency/Hz Age/years 15 20000 20 19000 25 17000 30 16000 40 15000 50 12000 60 10000 (b) Give the trend shown by this information. _ [1] (c) (i) What is the **lowest** frequency humans can hear? _Hz [1] (ii) What name is given to sound with frequencies above 20 000 Hz? _ [1] 14364

20GSA3212

Reasertin De a 20 7 Learning a Ð a Ð a D a Ð a Ð a Ð a Ð a Ð a Ð a Ð a D a 2D a Ð a Ð a 2D a Ð a Ð a Ð D a D a

Ð

P2

(d) The diagram below shows how the speed of sound can be measured using the flash-bang method.

(i) Describe how the speed of sound can be measured using the flash-bang method.

[3]

14364

[Turn over

P2

Reasertin

The experiment was repeated on different days and the results are shown in the table below.

Day of week	Speed of sound/ m/s
Monday	327.1
Tuesday	333.4
Wednesday	334.2

(ii) Use the information in the table to calculate the average speed of sound. Give your answer to one decimal place.

_____ m/s [2]

(iii) Apart from human error, suggest what could cause the different values for the speed of sound.

_ [1]

14364

20GSA3214

7 The cross-sectional area of a wire affects its resistance.

The table below shows how the resistance of 100 m of wire changes with cross-sectional area.

Cross-sectional area/mm ²	Resistance /Ω
0.5	3.4
1.0	1.7
1.5	1.1
2.0	0.9
2.5	0.7

(a) On the grid below plot and draw a line graph for this information.

20GSA3215

20GSA3216

P2

When the ball is hit, it gains kinetic energy.

(ii) Choose the equation which is used to calculate kinetic energy.

Circle your answer.

$$E_{\kappa} = mv^2$$
 : $E_{\kappa} = \frac{1}{2}mv$: $E_{\kappa} = \frac{1}{2}mv^2$
[1]

When a falling ball bounces on the ground, it rebounds to a lower height.

(c) Describe the energy changes of the ball as it rebounds from A to B.

[-]

[Turn over

9 (a) The diagram below shows two identical metal cans containing boiling water. One can has a dark, matt surface and the other has a light, shiny surface.

The temperature of the water in each can was recorded as it cooled.

The results are given in the table	below.
------------------------------------	--------

	Temperature/°C		
Time/minutes	Dark matt surface	Light shiny surface	
0	98	98	
5	39	52	
10	26	39	
15	20	32	
20	20	30	
25	20	29	

(i) Give the trend for the dark, matt surface.

14364

20GSA3218

P2

14364

	(ii)	Why does the dark, matt can cool faster than the light shiny can?	
			[1]
	(iii)	Describe how the heat travels from the inner surface of the metal cans to the outer surface.	
			[2]
(b)	Wh	y would putting a lid on the metal cans keep the water warmer for longer?	
			[1]
		THIS IS THE END OF THE QUESTION PAPER	

Sources:	
Question 1(a) Principal Examiner	
Question 1(c) Principal Examiner	
Question 3(a) Principal Examiner	
Question 5(a) Principal Examiner × 2	
Question 6(d) © Getty Images + Principal Examine	er
Question 8(a) © AdobeStock	
Question 8(c) Principal Examiner	
Question 9(a) Principal Examiner	
Question s(a) Finicipal Examiner	

DO NOT WRITE ON THIS PAGE

For Examiner's use only			
Question Number	Marks		
1			
2			
3			
4			
5			
6			
7			
8			
9			
Total			
Marks			

Examiner Number

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

14364/2

20GSA3220

C.